From the analysis presented in The Cathedral and the Bazaar [CatB], we can expect that open source has a high payoff where (a) reliability/stability/scalability are critical, and (b) correctness of design and implementation is not readily verified by means other than independent peer review. (The second criterion is met in practice by most non-trivial programs.)
A consumer's rational desire to avoid being locked into a monopoly supplier will increase its interest in open source (and, hence, the competitive-market value for suppliers of going open) as the software becomes more critical to that consumer. Thus, another criterion (c) pushes towards open source when the software is a business-critical capital good (as, for example, in many corporate MIS departments).
As for application area, we observed above that open-source infrastructure creates trust and symmetry effects that, over time, will tend to attract more customers and to outcompete closed-source infrastructure; and it is often better to have a smaller piece of such a rapidly-expanding market than a bigger piece of a closed and stagnant one. Accordingly, for infrastructure software, an open-source play for ubiquity is quite likely to have a higher long-term payoff than a closed-source play for rent from intellectual property.
In fact, the ability of potential customers to reason about the future consequences of vendor strategies and their reluctance to accept a supplier monopoly implies a stronger constraint; without already having overwhelming market power, you can choose either an open-source ubiquity play or a direct-revenue-from-closed-source play—but not both. (Analogues of this principle are visible elsewhere—e.g., in electronics markets where customers often refuse to buy sole-source designs.) The case can be put less negatively: where network effects (positive network externalities) dominate, open source is likely to be the right thing.
We may sum up this logic by observing that open source seems to be most successful in generating greater returns than is closed source in software that (d) establishes or enables a common computing and communications infrastructure.
Finally, we may note that purveyors of unique or just highly differentiated services have more incentive to fear the copying of their methods by competitors than do vendors of services for which the critical algorithms and knowledge bases are well understood. Accordingly, open source is more likely to dominate when (e) key methods (or functional equivalents) are part of common engineering knowledge.
The Internet core software, Apache, and Linux's implementation of the standard Unix API are prime exemplars of all five criteria. The path towards open source in the evolution of such markets are well-illustrated by the reconvergence of data networking on TCP/IP in the mid-1990s following fifteen years of failed empire-building attempts with closed protocols such as DECNET, XNS, IPX, and the like.
On the other hand, open source seems to make the least sense for companies that have unique possession of a value-generating software technology (strongly fulfilling criterion (e)) which is (a) relatively insensitive to failure, which can (b) readily be verified by means other than independent peer review, which is not (c) business-critical, and which would not have its value substantially increased by (d) network effects or ubiquity.
As an example of this extreme case, in early 1999 I was asked "Should we go open source?" by a company that writes software to calculate cutting patterns for sawmills that want to extract the maximum yardage of planks from logs. My conclusion was ``No.'' The only criterion this comes even close to fulfilling is (c); but at a pinch, an experienced operator could generate cut patterns by hand.
Note that my answer night have been very different if the cut-pattern calculator had been written by a sawmill-equipment manufacturer. In that case, opening the code would have increased the value of the associated hardware they were selling. Also note that if some open-source cut-pattern calculator already existed (perhaps the one written by the sawmill-equipment manufacturer) the closed-source product would have trouble competing with it—not so much for reasons of price, but because customers would perceive on open-source advantage in customizability and other traits.
An important point is that where a particular product or technology sits on these scales may change over time, as we'll see in the following case study.
In summary, the following discriminators push towards open source:
Reliability/stability/scalability are critical.
Correctness of design and implementation cannot readily be verified by means other than independent peer review.
The software is critical to the user's control of his/her business.
The software establishes or enables a common computing and communications infrastructure.
Key methods (or functional equivalents of them) are part of common engineering knowledge.