
9

Generation:
Pushing the Specification Level
Upwards

The programmer at wit’s end ... can often do best by disentangling himself
from his code, rearing back, and contemplating his data. Representation is
the essence of programming.

The Mythical Man-Month, Anniversary Edition (1975–1995),
p. 103

—Fred Brooks

In Chapter 1 we observed that human beings are better at visualizing data than they
are at reasoning about control flow. We recapitulate: To see this, compare the expres-
siveness and explanatory power of a diagram of a fifty-node pointer tree with a
flowchart of a fifty-line program. Or (better) of an array initializer expressing a
conversion table with an equivalent switch statement. The difference in transparency
and clarity is dramatic.1

Data is more tractable than program logic. That’s true whether the data is an ordi-
nary table, a declarative markup language, a templating system, or a set of macros
that will expand to program logic. It’s good practice to move as much of the complexity

1. For further development of this point see [Bentley].

217

in your design as possible away from procedural code and into data, and good practice
to pick data representations that are convenient for humans to maintain and manipulate.
Translating those representations into forms that are convenient for machines to process
is another job for machines, not for humans.

Another important advantage of higher-level, more declarative notations is
that they lend themselves better to compile-time checking. Procedural no-
tations inherently have complex run-time behavior which is difficult to an-
alyze at compile time. Declarative notations give the implementation much
more leverage for finding mistakes, by permitting much more thorough
understanding of the intended behavior.

—Henry Spencer

These insights ground in theory a set of practices that have always been an impor-
tant part of the Unix programmer’s toolkit—very high-level languages, data-driven
programming, code generators, and domain-specific minilanguages. What unifies
these is that they are all ways of lifting the generation of code up some levels, so that
specifications can be smaller. We’ve previously noted that defect densities tend to be
nearly constant across programming languages; all these practices mean that whatever
malign forces generate our bugs will get fewer lines to wreak their havoc on.

In Chapter 8 we discussed the uses of domain-specific minilanguages. In Chapter 14
we’ll make the argument for very-high-level languages. In this chapter we’ll look at
some design studies in data-driven programming and a few examples of ad-hoc code
generation; we’ll look at some code-generation tools in Chapter 15. As with minilan-
guages, these methods can enable you to drastically cut the line count of your pro-
grams, and correspondingly lower debugging time and maintenance costs.

Data-Driven Programming9.1

When doing data-driven programming, one clearly distinguishes code from the data
structures on which it acts, and designs both so that one can make changes to the
logic of the program by editing not the code but the data structure.

Data-driven programming is sometimes confused with object orientation, another
style in which data organization is supposed to be central. There are at least two
differences. One is that in data-driven programming, the data is not merely the state
of some object, but actually defines the control flow of the program. Where the primary
concern in OO is encapsulation, the primary concern in data-driven programming is
writing as little fixed code as possible. Unix has a stronger tradition of data-driven
programming than of OO.

Chapter 9 Generation218

Programming data-driven style is also sometimes confused with writing state
machines. It is in fact possible to express the logic of a state machine as a table or
data structure, but hand-coded state machines are usually rigid blocks of code that
are far harder to modify than a table.

An important rule when doing any kind of code generation or data-driven program-
ming is this: always push problems upstream. Don’t hack the generated code or any
intermediate representations by hand—instead, think of a way to improve or replace
your translation tool. Otherwise you’re likely to find that hand-patching bits which
should have been generated correctly by machine will have turned into an infinite
time sink.

At the upper end of its complexity scale, data-driven programming merges into
writing interpreters for p-code or simple minilanguages of the kind we surveyed in
Chapter 8. At other edges, it merges into code generation and state-machine program-
ming. The distinctions are not actually that important; the important part is moving
program logic away from hardwired control structures and into data.

Case Study: ascii9.1.1

I maintain a program called ascii, a very simple little utility that tries to interpret its
command-line arguments as names of ASCII characters and report all the equivalent
names. Code and documentation for the tool are available from the project page
(http://www.catb.org/~esr/ascii). Here is an illustrative screenshot:

esr@snark:~/WWW/writings/taoup$ ascii 10

ASCII 1/0 is decimal 016, hex 10, octal 020, bits 00010000: called ^P, DLE

Official name: Data Link Escape

ASCII 0/10 is decimal 010, hex 0a, octal 012, bits 00001010: called ^J, LF, NL

Official name: Line Feed

C escape: '\n'

Other names: Newline

ASCII 0/8 is decimal 008, hex 08, octal 010, bits 00001000: called ^H, BS

Official name: Backspace

C escape: '\b'

Other names:

ASCII 0/2 is decimal 002, hex 02, octal 002, bits 00000010: called ^B, STX

Official name: Start of Text

One indication that this program was a good idea is the fact that it has an
unexpected use—as a quick CLI aid to converting between decimal, hex, octal, and
binary representations of bytes.

2199.1 Data-Driven Programming

The main logic of this program could have been coded as a 256-branch case
statement. This would, however, have made the code bulky and difficult to maintain.
It would also have tangled parts that change relatively rapidly (like the list of slang
names for characters) with parts that change slowly or not at all (like the official
names), putting them both in the same legend string and making errors during editing
much more likely to touch data that ought to be stable.

Instead, we apply data-driven programming. All the character name strings live
in a table structure that is quite a bit larger than any of the functions in the code (indeed,
counted in lines it is larger than any three of the functions in the program). The code
merely navigates the table and does low-level tasks like radix conversions. The initial-
izer actually lives in the file nametable.h, which is generated in a way we’ll de-
scribe later in this chapter.

This organization makes it easy to add new character names, change existing ones,
or delete old names by simply editing the table, without disturbing the code.

(The way the program is built is good Unix style, but the output format is question-
able. It’s hard to see how the output could usefully become the input of any other
program, so it does not play well with others.)

Case Study: Statistical Spam Filtering9.1.2

One interesting case of data-driven programming is statistical learning algorithms for
detecting spam (unsolicited bulk email). A whole class of mail filter programs (those
easily findable by web search include popfile, spambayes, and bogofilter) use a database
of word correlations to replace the elaborate pattern-matching conditional logic of
pattern-matching spam filters.

Programs like these became common on the Internet very rapidly following Paul
Graham’s landmark paper A Plan for Spam [Graham] in 2002. While the explosion
was triggered by the increasing cost of the pattern-matching arms race, the statistical-
filtering idea was adopted first and fastest by Unix shops. In part, this was certainly
because almost all the Internet service providers (who are most burdened by spam,
and thus had most incentive to adopt effective new techniques) are Unix shops—but
undoubtedly the harmony with some traditional themes in Unix software design helped
as well.

Conventional spam filters require that a system administrator, or some other re-
sponsible party, maintain information on patterns of text found in spam—names of
sites that emit nothing but spam, come-on phrases often used by pornography sites
or Internet scam artists, and the like. In his paper, Graham noted accurately that
computer programmers like the idea of pattern-matching filters, and sometimes have
difficulty seeing past that approach, because it offers them so many opportunities to
be clever.

Chapter 9 Generation220

Statistical spam filters, on the other hand, work by collecting feedback about what
the user judges to be spam versus nonspam. That feedback is processed into
databases of statistical correlation coefficients or weights connecting words or
phrases to the user’s spam/nonspam classification. The most popular algorithms use
minor variants of Bayes’s Theorem on conditional probabilities, but other techniques
(including various sorts of polynomial hashing) are also employed.

In all these programs, the correlation check is a relatively trivial mathematical
formula. The weights fed into the formula along with the message being checked
serve as implicit control structure for the filtering algorithm.

The problem with conventional pattern-matching spam filters is that they are brittle.
Spammers are constantly gaming against the filter-rule databases, forcing the filter
maintainers to constantly reprogram their filters to stay ahead in the arms race. Statis-
tical spam filters generate their own filter rules from the user feedback.

In fact, experience with statistical filters seems to show that the particular learning
algorithm used is far less important than the quality of the spam and non-spam data
sets from which the learning algorithm computes its weights. So the results of statis-
tical filters really are driven more by the shape of the data than by the algorithm.

A Plan for Spam was something of a bombshell because its author argued
convincingly that a simple, even crude, statistical approach gave a lower rate of non-
spam being erroneously classified as spam than either elaborate pattern-matching
techniques or the human eyeball could manage. For Unix programmers, seeing past
the lure of clever pattern-matching was far easier than in other cultures without a
strong attachment to “Keep It Simple, Stupid!”

Case Study: Metaclass Hacking in fetchmailconf9.1.3

The fetchmailconf(1) dotfile configurator shipped with fetchmail(1) contains an in-
structive example of advanced data-driven programming in a very high-level, object-
oriented language.

In October 1997 a series of questions on the fetchmail-friends mailing list made
it clear that end-users were having increasing troubles generating configuration files
for fetchmail. The file uses a simple, classically-Unixy free-format syntax, but can
become forbiddingly complicated when a user has POP3 and IMAP accounts at
multiple sites. See Example 9.1 for a somewhat simplified version of the fetchmail
author’s configuration file.

The design objective of fetchmailconf was to completely hide the control file syntax
behind a fashionable, ergonomically-correct GUI interface replete with selection
buttons, slider bars and fill-out forms. But the beta design had a problem: it could
easily generate configuration files from the user’s GUI actions, but could not read and
edit existing ones.

2219.1 Data-Driven Programming

Example 9.1: Example of fetchmailrc syntax.

set postmaster "esr"
set daemon 300

poll imap.ccil.org with proto IMAP and options no dns
 aka snark.thyrsus.com locke.ccil.org ccil.org
 user esr there is esr here
 options fetchall dropstatus warnings 3600

poll imap.netaxs.com with proto IMAP
 user "esr" there is esr here options dropstatus warnings 3600

skip pop.tems.com with proto POP3:
 user esr here is ed there options fetchall

The parser for fetchmail’s configuration file syntax is rather elaborate. It’s actually
written in yacc and lex, the two classic Unix tools for generating language-parsing
code in C. For fetchmailconf to be able to edit existing configuration files, it at first
appeared that it would be necessary to replicate that elaborate parser in fetchmailconf’s
implementation language—Python.

This tactic seemed doomed. Even leaving aside the amount of duplicative work
implied, it is notoriously hard to be certain that two parsers in two different languages
accept the same grammar. Keeping them synchronized as the configuration language
evolved bid fair to be a maintenance nightmare. It would have violated the SPOT rule
we discussed in Chapter 4 wholesale.

This problem stumped me for a while. The insight that cracked it was that
fetchmailconf could use fetchmail’s own parser as a filter! I added a --configdump
option to fetchmail that would parse .fetchmailrc and dump the result to standard
output in the format of a Python initializer. For the file above, the result would look
roughly like Example 9.2 (to save space, some data not relevant to the example
is omitted).

The major hurdle had been leapt. The Python interpreter could then evaluate the
fetchmail --configdump output and read the configuration available to
fetchmailconf as the value of the variable ‘fetchmail’.

But this wasn’t quite the last obstacle in the race. What was really needed
wasn’t just for fetchmailconf to have the existing configuration, but to turn it
into a linked tree of live objects. There would be three kinds of object in this tree:
Configuration (the top-level object representing the entire configuration), Site
(representing one of the servers to be polled), and User (representing user data at-
tached to a site). The example file describes three site objects, each with one user
object attached to it.

Chapter 9 Generation222

Example 9.2: Python structure dump of a fetchmail configuration.

fetchmailrc = {
 'poll_interval':300,
 "logfile":None,
 "postmaster":"esr",
 'bouncemail':TRUE,
 "properties":None,
 'invisible':FALSE,
 'syslog':FALSE,
 # List of server entries begins here
 'servers': [
 # Entry for site `imap.ccil.org' begins:
 {
 "pollname":"imap.ccil.org",
 'active':TRUE,
 "via":None,
 "protocol":"IMAP",
 'port':0,
 'timeout':300,
 'dns':FALSE,
 "aka":["snark.thyrsus.com","locke.ccil.org","ccil.org"],
 'users': [
 {
 "remote":"esr",
 "password":"Malvern",
 'localnames':["esr"],
 'fetchall':TRUE,
 'keep':FALSE,
 'flush':FALSE,
 "mda":None,
 'limit':0,
 'warnings':3600,
 }
 ,]
 }
 ,
 # Entry for site `imap.netaxs.com' begins:
 {
 "pollname":"imap.netaxs.com",
 'active':TRUE,
 "via":None,
 "protocol":"IMAP",
 'port':0,
 'timeout':300,
 'dns':TRUE,
 "aka":None,
 'users': [

2239.1 Data-Driven Programming

 {
 "remote":"esr",
 "password":"d0wnthere",
 'localnames':["esr"],
 'fetchall':FALSE,
 'keep':FALSE,
 'flush':FALSE,
 "mda":None,
 'limit':0,
 'warnings':3600,
 }
 ,]
 }
 ,
 # Entry for site `pop.tems.com' begins:
 {
 "pollname":"pop.tems.com",
 'active':FALSE,
 "via":None,
 "protocol":"POP3",
 'port':0,
 'timeout':300,
 'dns':TRUE,
 'uidl':FALSE,
 "aka":None,
 'users': [
 {
 "remote":"ed",
 "password":None,
 'localnames':["esr"],
 'fetchall':TRUE,
 'keep':FALSE,
 'flush':FALSE,
 "mda":None,
 'limit':0,
 'warnings':3600,
 }
 ,]
 }
]
}

Chapter 9 Generation224

The three object classes already existed in fetchmailconf. Each had a method that
caused it to pop up a GUI edit panel to modify its instance data. The last remaining
problem was to somehow transform the static data in this Python initializer into
live objects.

I considered writing a glue layer that would explicitly know about the structure
of all three classes and use that knowledge to grovel through the initializer creating
matching objects, but rejected that idea because new class members were likely to be
added over time as the configuration language grew new features. If the object-creation
code were written in the obvious way, it would once again be fragile and tend to fall
out of synchronization when either the class definitions or the initializer structure
dumped by the --configdump report generator changed. Again, a recipe for
endless bugs.

The better way would be data-driven programming—code that would analyze the
shape and members of the initializer, query the class definitions themselves about
their members, and then impedance-match the two sets.

Lisp and Java programmers call this introspection; in object-oriented languages
it’s called metaclass hacking and is generally considered fearsomely esoteric, deep
black magic. Most object-oriented languages don’t support it at all; in those that do
(Perl and Java among them), it tends to be a complicated and fragile undertaking. But
Python’s facilities for introspection and metaclass hacking are unusually accessible.

See Example 9.3 for the solution code, from near line 1895 of the 1.43 version.
Most of this code is error-checking against the possibility that the class members

and --configdump report generation have drifted out of synchronization. It ensures
that if the code breaks, the breakage will be detected early—an implementation of
the Rule of Repair. The heart of this function is the last two lines, which set attributes
in the class from corresponding members in the dictionary. They’re equivalent to this:

def copy_instance(toclass, fromdict):
 for x in fromdict.keys():
 setattr(toclass, x, fromdict[x])

When your code is this simple, it is far more likely to be right. See Example 9.4
for the code that calls it.

The key point to extract from this code is that it traverses the three levels of the
initializer (configuration/server/user), instantiating the correct objects at each level
into lists contained in the next object up. Because copy_instance is data-driven
and completely generic, it can be used on all three levels for three different
object types.

2259.1 Data-Driven Programming

Example 9.3: copy_instance metaclass code.

def copy_instance(toclass, fromdict):
Make a class object of given type from a conformant dictionary.
 class_sig = toclass.__dict__.keys(); class_sig.sort()
 dict_keys = fromdict.keys(); dict_keys.sort()
 common = set_intersection(class_sig, dict_keys)
 if 'typemap' in class_sig:
 class_sig.remove('typemap')
 if tuple(class_sig) != tuple(dict_keys):
 print "Conformability error"
print "Class signature: " + `class_sig`
print "Dictionary keys: " + `dict_keys`
 print "Not matched in class signature: "+ \
 `set_diff(class_sig, common)`
 print "Not matched in dictionary keys: "+ \
 `set_diff(dict_keys, common)`
 sys.exit(1)
 else:
 for x in dict_keys:
 setattr(toclass, x, fromdict[x])

This is a new-school sort of example; Python was not even invented until 1990.
But it reflects themes that go back to 1969 in the Unix tradition. If meditating on Unix
programming as practiced by his predecessors had not taught me constructive lazi-
ness—insisting on reuse, and refusing to write duplicative glue code in accordance
with the SPOT rule—I might have rushed into coding a parser in Python. The first
key insight that fetchmail itself could be made into fetchmailconf’s configuration
parser might never have happened.

The second insight (that copy_instance could be generic) proceeded from
the Unix tradition of looking assiduously for ways to avoid hand-hacking. But more
specifically, Unix programmers are very used to writing parser specifications to gen-
erate parsers for processing language-like markups; from there it was a short step to
believing that the rest of the job could be done by some kind of generic tree-walk of
the configuration structure. Two separate stages of data-driven programming, one
building on the other, were needed to solve the design problem cleanly.

Insights like this can be extraordinarily powerful. The code we have been looking
at was written in about ninety minutes, worked the first time it was run, and has been
stable in the years since (the only time it has ever broken is when it threw an exception
in the presence of genuine version skew). It’s less than forty lines and beautifully
simple. There is no way that the naïve approach of building an entire second parser
could possibly have produced this kind of maintainability, reliability or compactness.
Re-use, simplification, generalization, orthogonality: this is the Zen of Unix in action.

Chapter 9 Generation226

Example 9.4: Calling context for copy_instance.

 # The tricky part - initializing objects from the `configuration'
 # global. `Configuration' is the top level of the object tree
 # we're going to mung
 Configuration = Controls()
 copy_instance(Configuration, configuration)
 Configuration.servers = [];
 for server in configuration['servers']:
 Newsite = Server()
 copy_instance(Newsite, server)
 Configuration.servers.append(Newsite)
 Newsite.users = [];
 for user in server['users']:
 Newuser = User()
 copy_instance(Newuser, user)
 Newsite.users.append(Newuser)

In Chapter 10, we’ll examine the run-control syntax of fetchmail as an example
of the standard shell-like metaformat for run-control files. In Chapter 14 we’ll use
fetchmailconf as an example of Python’s strength in rapidly building GUI interfaces.

Ad-hoc Code Generation9.2

Unix comes equipped with some powerful special-purpose code generators for pur-
poses like building lexical analyzers (tokenizers) and parsers; we’ll survey these in
Chapter 15. But there are much simpler, lighter-weight sorts of code generation we
can use to make life easier without having to know any compiler theory or write
(error-prone) procedural logic.

Here are a couple of simple case studies to illustrate this point:

Case Study: Generating Code for the ascii Displays9.2.1

Called without arguments, ascii generates a usage screen that looks like Example 9.5.
This screen is carefully designed to fit in 23 rows and 79 columns, so that it will

fit in a 24×80 terminal window.
This table could be generated at runtime, on the fly. Grinding out the decimal and

hex columns would be easy enough. But between wrapping the table at the right places
and knowing when to print mnemonics like NUL rather than characters, there would
have been enough odd corner cases to make the code distinctly unpleasant. Further-
more, the columns had to be unevenly spaced to make the table fit in 79 columns. But

2279.2 Ad-hoc Code Generation

Example 9.5: ascii usage screen.

Usage: ascii [-dxohv] [-t] [char-alias...]

 -t = one-line output -d = Decimal table -o = octal table -x = hex table

 -h = This help screen -v = version information

Prints all aliases of an ASCII character. Args may be chars, C \-escapes,

English names, ^-escapes, ASCII mnemonics, or numerics in decimal/octal/hex.

Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex Dec Hex

 0 00 NUL 16 10 DLE 32 20 48 30 0 64 40 @ 80 50 P 96 60 ` 112 70 p

 1 01 SOH 17 11 DC1 33 21 ! 49 31 1 65 41 A 81 51 Q 97 61 a 113 71 q

 2 02 STX 18 12 DC2 34 22 " 50 32 2 66 42 B 82 52 R 98 62 b 114 72 r

 3 03 ETX 19 13 DC3 35 23 # 51 33 3 67 43 C 83 53 S 99 63 c 115 73 s

 4 04 EOT 20 14 DC4 36 24 $ 52 34 4 68 44 D 84 54 T 100 64 d 116 74 t

 5 05 ENQ 21 15 NAK 37 25 % 53 35 5 69 45 E 85 55 U 101 65 e 117 75 u

 6 06 ACK 22 16 SYN 38 26 & 54 36 6 70 46 F 86 56 V 102 66 f 118 76 v

 7 07 BEL 23 17 ETB 39 27 ' 55 37 7 71 47 G 87 57 W 103 67 g 119 77 w

 8 08 BS 24 18 CAN 40 28 (56 38 8 72 48 H 88 58 X 104 68 h 120 78 x

 9 09 HT 25 19 EM 41 29) 57 39 9 73 49 I 89 59 Y 105 69 i 121 79 y

 10 0A LF 26 1A SUB 42 2A * 58 3A : 74 4A J 90 5A Z 106 6A j 122 7A z

 11 0B VT 27 1B ESC 43 2B + 59 3B ; 75 4B K 91 5B [107 6B k 123 7B {

 12 0C FF 28 1C FS 44 2C , 60 3C < 76 4C L 92 5C \ 108 6C l 124 7C |

 13 0D CR 29 1D GS 45 2D - 61 3D = 77 4D M 93 5D] 109 6D m 125 7D }

 14 0E SO 30 1E RS 46 2E . 62 3E > 78 4E N 94 5E ^ 110 6E n 126 7E ~

 15 0F SI 31 1F US 47 2F / 63 3F ? 79 4F O 95 5F _ 111 6F o 127 7F DEL

any Unix programmer would reflexively express it as a block of data before finding
out these things.

The most naïve way to generate the usage screen would have been to put each line
into a C initializer in the ascii.c source code, and then have all lines be written
out by code that steps through the initializer. The problem with this method is that
the extra data in the C initializer format (trailing newline, string quotes, comma)
would make the lines longer than 79 characters, causing them to wrap and making it
rather difficult to map the appearance of the code to the appearance of the output.
This, in turn, would make the display difficult to edit, which was annoying when I
was tinkering it to fit in 24×80 screen cells.

A more sophisticated method using the string-pasting behavior of the ANSI C
preprocessor collided with a variant of the same problem. Essentially, any way of in-
lining the usage screen explicitly would involve punctuation at start and end of line

Chapter 9 Generation228

that there’s no room for.2 And copying the table to the screen from a file at runtime
seemed like a fragile expedient; after all, the file could get lost.

Here’s the solution. The source distribution contains a file that just contains the
usage screen, exactly as listed above and named splashscreen. The C source
contains the following function:

void
showHelp(FILE *out, char *progname)
{
 fprintf(out,"Usage: %s [-dxohv] [-t] [char-alias...]\n", progname);
#include "splashscreen.h"

 exit(0);
}

And splashscreen.h is generated by a makefile production:

splashscreen.h: splashscreen
 sed <splashscreen >splashscreen.h \
 -e 's/\\/\\\\/g' -e 's/"/\\"/' -e 's/.*/puts("&");/'

So when the program is built, the splashscreen file is automatically massaged
into a series of output function calls, which are then included by the C preprocessor
in the right function.

By generating the code from data, we get to keep the editable version of the usage
screen identical to its display appearance. This promotes transparency. Furthermore,
we could modify the usage screen at will without touching the C code at all, and the
right thing would automatically happen on the next build.

For similar reasons, the initializer that holds the name synonym strings is also
generated via a sed script in the makefile, from a file called nametable in the ascii
source distribution. Most of nametable is simply copied into the C initializer. But
the generation process would make it easy to adapt this tool for other 8-bit character
sets such as the ISO-8859 series (Latin-1 and friends).

This is an almost trivial example, but it nevertheless illustrates the advantages of
even simple and ad-hoc code generation. Similar techniques could be applied to larger
programs with correspondingly greater benefits.

2. Scripting languages tend to solve this problem more elegantly than C does. Investigate the
shell’s here documents and Python’s triple-quote construct to find out how.

2299.2 Ad-hoc Code Generation

Case Study: Generating HTML Code for a Tabular List9.2.2

Let’s suppose that we want to put a page of tabular data on a Web page. We want the
first few lines to look like Example 9.6.

Example 9.6: Desired output format for the star table.

Aalat David Weber The Armageddon Inheritance
Aelmos Alan Dean Foster The Man who Used the Universe
Aedryr Steve Miller/Sharon Lee Scout's Progress
Aergistal Gerard Klein The Overlords of War
Afdiar L. Neil Smith Tom Paine Maru
Agandar Donald Kingsbury Psychohistorical Crisis
Aghirnamirr Jo Clayton Shadowkill

The thick-as-a-plank way to handle this would be to hand-write HTML table code
for the desired appearance. Then, each time we want to add a name, we’d have to
hand-write another set of <tr> and <td> tags for the entry. This would get very
tedious very quickly. But what’s worse, changing the format of the list would require
hand-hacking every entry.

The superficially clever way to handle this would be to make this data a three-
column relation in a database, then use some fancy CGI technique or a
database-capable templating engine like PHP to generate the page on the fly. But
suppose we know that the list will not change very often, don’t want to run a database
server just to be able to display this list, and don’t want to load the server with unnec-
essary CGI traffic?

There’s a better solution. We put the data in a tabular flat-file format like
Example 9.7.

Example 9.7: Master form of the star table.

Aalat :David Weber :The Armageddon Inheritance
Aelmos :Alan Dean Foster :The Man who Used the Universe
Aedryr :Steve Miller/Sharon Lee :Scout's Progress
Aergistal :Gerard Klein :The Overlords of War
Afdiar :L. Neil Smith :Tom Paine Maru
Agandar :Donald Kingsbury :Psychohistorical Crisis
Aghirnamirr :Jo Clayton :Shadowkill

Chapter 9 Generation230

We could in a pinch have done without the explicit colon field delimiters, using
the pattern consisting of two or more spaces as a delimiter, but the explicit delimiter
protects us in case we press spacebar twice while editing a field value and fail to
notice it.

We then write a script in shell, Perl, Python, or Tcl that massages this file into an
HTML table, and run that each time we add an entry. The old-school Unix way would
revolve around the following nigh-unreadable sed(1) invocation

sed -e 's,^,<tr><td>,' -e 's,$,</td></tr>,' -e 's,:,</td><td>,g'

or this perhaps slightly more scrutable awk(1) program:

awk -F: '{printf("<tr><td>%s</td><td>%s</td><td>%s</td></tr>\n", \
 $1, $2, $3)}'

(If either of these examples interests but mystifies, read the documentation for sed(1)
or awk(1). We explained in Chapter 8 that the latter has largely fallen out of use. The
former is still an important Unix tool that we haven’t examined in detail because (a)
Unix programmers already know it, and (b) it’s easy for non-Unix programmers to
pick up from the manual page once they grasp the basic ideas about pipelines and
redirection.)

A new-school solution might center on this Python code, or on equivalent Perl:

for row in map(lambda x:x.rstrip().split(':'),sys.stdin.readlines()):
 print "<tr><td>" + "</td><td>".join(row) + "</td></tr>"

These scripts took about five minutes each to write and debug, certainly less time
than would have been required to either hand-hack the initial HTML or create and
verify the database. The combination of the table and this code will be much simpler
to maintain than either the under-engineered hand-hacked HTML or the over-engi-
neered database.

A further advantage of this way of solving the problem is that the master file stays
easy to search and modify with an ordinary text editor. Another is that we can exper-
iment with different table-to-HTML transformations by tweaking the generator script,
or easily make a subset of the report by putting a grep(1) filter before it.

I actually use this technique to maintain the Web page that lists fetchmail test sites;
the example above is science-fictional only because publishing the real data would
reveal account usernames and passwords.

This was a somewhat less trivial example than the previous one. What we’ve actu-
ally designed here is a separation between content and formatting, with the generator
script acting as a stylesheet. (This is yet another mechanism-vs.-policy separation.)

2319.2 Ad-hoc Code Generation

The lesson in all these cases is the same. Do as little work as possible. Let the data
shape the code. Lean on your tools. Separate mechanism from policy. Expert Unix
programmers learn to see possibilities like these quickly and automatically. Construc-
tive laziness is one of the cardinal virtues of the master programmer.

Chapter 9 Generation232

