
12

Optimization

Premature optimization is the root of all evil.

— C. A. R. Hoare

This is going to be a very short chapter, because the main thing Unix experience
teaches us about optimizing for performance is how to know when not to do it. A
secondary lesson is that the most effective optimization tactics are usually things we
do for other reasons, such as cleanness of design.

Don’t Just Do Something, Stand There!12.1

The most powerful optimization technique in any programmer’s toolbox is to do
nothing.

This very Zen advice is true for several reasons. One is the exponential effect of
Moore’s Law—the smartest, cheapest, and often fastest way to collect performance
gains is to wait a few months for your target hardware to become more capable. Given
the cost ratio between hardware and programmer time, there are almost always better
things to do with your time than to optimize a working system.

We can get mathematically specific about this. It is almost never worth doing op-
timizations that reduce resource use by merely a constant factor; it’s smarter to con-
centrate effort on cases in which you can reduce average-case running time or space

289



use from O(n2) to O(n) or O(n log n)1, or similarly reduce from a higher order. Linear
performance gains tend to be rapidly swamped by Moore’s Law2.

Another very constructive form of doing nothing is to not write code. The program
can’t be slowed down by code that isn’t there. It can be slowed down by code that is
there but less efficient than it could be—but that’s a different matter.

Measure before Optimizing12.2

When you have real-world evidence that your application is too slow, then (and only
then) is the time to think about optimizing the code. But before you do more than
think about optimizing, measure.

Recall Rob Pike’s six rules in Chapter 1. One of the lessons that the original Unix
programmers learned early is that intuition is a poor guide to where the bottlenecks
are, even for one who knows the code in question intimately. Unixes, unlike most
other operating systems, usually come with profilers; use them.

Reading profiler results is something of an art. There are a couple of recurring
problems: one is instrumentation noise, another is the effect of imposed external la-
tencies, and a third is overweighting of upper nodes in the call graph.

The instrumentation-noise problem is fundamental. Profilers work by inserting
instructions that report execution time at the entry and exit points of subroutines, also
at fixed intervals within the inline code of routines. These instructions themselves
take time to execute. The effect is to reduce the dispersion of call times: very short
subroutines tend to look more expensive than they are, with a lot of noise in their
comparative call times, while for longer ones the instrumentation overhead is invisible.

1. For readers unfamiliar with O notation, it is a way of indicating how the average running
time of an algorithm changes with the size of its inputs. An O(1) algorithm runs in constant
time. An O(n) algorithm runs in a time that is predicted by An + C, where A is some unknown
constant of proportionality and C is an unknown constant representing setup time. Linear
search of a list for a specified value is O(n). An O(n2) algorithm runs in time An2 plus
lower-order terms (which might be linear, or logarithmic, of any other function lower than a
quadratic). Checking a list for duplicate values (by the naïve method, not sorting it) is O(n2).
Similarly, O(n3) algorithms have an average run time predicted by the cube of problem size;
these tend to be too slow for practical use. O(log n) is typical of tree searches. Intelligent
choice of algorithm can often reduce running time from O(n2) to O(log n). Sometimes when
we are interested in predicting an algorithm’s memory utilization, we may notice that it varies
as O(1) or O(n) or O(n2); in general, algorithms with O(n2) or higher memory utilization are
not practical either.

2. The eighteen-month doubling time usually quoted for Moore’s Law implies that you can
collect a 26% performance gain just by buying new hardware in six months.

Chapter 12 Optimization290



Bearing instrumentation noise in mind, it’s wise to assume that the times listed
for the fastest, shortest subroutines are going to have a lot of froth and air in them.
They can still be eating a lot of time if they are called very frequently, however, so
pay particular attention to their call-count statistics.

The external-latency problem is also fundamental. There are various sorts of delay
and distortion that can happen behind the profiler’s back. The simplest is overhead
from operations with unpredictable latency—disk and network accesses, cache fills,
process-context switches, and the like. The problem is not so much that these overheads
happen—they may actually be what you’re trying to measure, especially if you’re
focusing on whole-system performance rather than just tuning a critical inner loop.
The problem is that they have a random component that means the results from any
individual profiling run may not be very useful.

One way to minimize the effects of these noise sources, and get a better picture
of where the time is going in the average case, is to add together the results from a
lot of profiling runs. There are a lot of good reasons to build test harnesses and test
loads for your programs before you get to optimizing; the most important reason,
usually far more important than performance tuning, is so you can regression-test
your program for correctness as you change it. Once you’ve done this, being able to
profile repeated tests under load is a nice side effect that will often give you better
information than a few runs by hand.

Various effects tend to allocate time spent to calling routines rather than callees,
overweighting upper modes in the call graph. Function-call overhead, for example,
is often charged to the calling routine (whether or not this is true depends partly on
your machine architecture and where the profiler is allowed to insert probes). Macros
and inline functions, if your compiler supports them, won’t show up in the profiling
report at all; every bit of their time gets charged to the calling function.

More importantly, many time-reporting tools give a display in which time spent
in subroutines is charged to the caller. (The gprof(1) profiler distributed with open-
source Unixes has this trait.) Naïvely subtracting callee time from caller time won’t
give you a useful result if the same routine can have more than one caller—the effect
would be to artificially deflate both callers’ times. Especially nasty is the common
case of a utility function with multiple call sites, some of which make lots of trivial
calls and others of which make a few complicated ones.

To get more transparent results, factor your code so that upper-level routines consist
as much as possible of calls to lower-level routines, rather than in-line code. If you
keep the overhead of upper-level control logic to a minimum, the call structure of the
code will tend to organize the profile report in a way that is relatively easy to read.

You’ll get more insight from using profilers if you think of them less as ways to
collect individual performance numbers, and more as ways to learn how performance
varies as a function of interesting parameters (e.g., problem size, CPU speed, disc
speed, memory size, compiler optimization, or whatever else is relevant). Try fitting

29112.2 Measure before Optimizing



those numbers to a model, using open-source software like R or a good-quality pro-
prietary tool like MATLAB.

The natural smoothing of the data that results from model fitting tends to
focus on the big effects and cover up the small, noisy ones. For example,
by fitting a cubic to the matrix inversion routine in MATLAB on random
matrices from 10 × 10 to 1000 × 1000, it is clear that we actually have three
cubics, with clearly defined boundaries, that correspond roughly to “in
cache”, “in memory but out of cache”, and “out of memory”. The data
shows us this effect even if weren’t looking for it, just by looking at the
deviations from the best fit.

—Steve Johnson

Nonlocality Considered Harmful12.3

The most effective way to optimize your code is to keep it small and simple. We’ve
been through lots of good reasons to keep it small and simple earlier in this book.
Here’s a new one: you want the central data structures and the time-critical loops in
your code never to fall out of cache.

Consider your target machine as a hierarchy of memory types arranged by distance
from the processor. There are the processor’s own registers; its instruction pipeline;
the level-one (L1) cache; the level-two (L2) cache; possibly a level-three (L3) cache;
main memory (what Unix old hands still quaintly call ‘core’); and the disk drives
where swap space lives. Technologies like SMP, shared-memory clusters, and non-
uniform memory access (NUMA) add more layers to the picture but only widen the
overall spread.

Every kind of access to that stack is getting faster. Processor cycles are almost
free, outside of a few demanding applications like modeling nuclear explosions or
real-time video compression. But what’s also happening is that the speed ratios between
layers in the storage hierarchy are all increasing as processor speeds go up. Thus, the
relative cost of a cache miss is increasing.

So we have an interesting paradox. As machine resources plummet, the expected
cost of large data structures falls—but because the cost spread between adjacent cache
levels is also going up, the performance impact of being just large enough to break a
cache boundary is also rising.

“Small is beautiful” is therefore better advice than ever, particularly with regard
to central data structures that must live in the fastest possible cache. The advice applies

Chapter 12 Optimization292



to code as well; the average instruction spends more time being loaded than it
does executing.

This turns some traditional advice on its head. Compiler optimizations like loop
unrolling, which get rid of relatively expensive machine instructions in return for an
increase in total code size, may no longer be worth doing. Another example is precom-
puting small tables—for example, a table of sin(x) by degree for optimizing rotations
in a 3D graphics engine will take 365 × 4 bytes on a modern machine. Before proces-
sors got enough faster than memory to demand caching, this was an obvious speed
optimization. Nowadays it may be faster to recompute each time rather than pay for
the percentage of additional cache misses caused by the table.

But in the future, this might turn around again as caches grow larger. More gener-
ally, many optimizations are temporary and can easily turn into pessimizations as cost
ratios change. The only way to know is to measure and see.

Throughput vs. Latency12.4

Another effect of fast processors is that performance is usually bounded by the cost
of I/O and—especially with programs that use the Internet—network transactions.
It’s therefore valuable to know how to design network protocols for good performance.

The most important issue is avoiding protocol round trips as much as possible.
Every protocol transaction that requires a handshake turns any latency in the connection
into a potentially serious slowdown. Avoiding such handshakes is not specifically a
Unix-tradition practice, but it’s one that needs mention here because so many protocol
designs lose huge amounts of performance to them.

I cannot say enough about latency. X11 went well beyond X10 in avoiding
round trip requests: the Render extension goes even further. X (and these
days, HTTP/1.1) is a streaming protocol. For example, on my laptop, I can
execute over 4 million 1x1 rectangle requests (8 million no-op requests)
per second. But round trips are hundreds or thousands of times more
expensive. Anytime you can get a client to do something without having
to contact the server, you have a tremendous win.

—Jim Gettys

In fact, a good rule of thumb is to design for the lowest possible latency and ignore
bandwidth costs until your profiling tells you otherwise. Bandwidth problems can be
solved later in development by tricks like compressing a protocol stream on the fly;
but getting rid of high latency baked into an existing design is much, much harder
(often, effectively impossible).

29312.4 Throughput vs. Latency



While this effect shows up most clearly in network protocol design, throughput
vs. latency tradeoffs are a much more general phenomenon. In writing applications,
you will sometimes face a choice between doing an expensive computation once in
anticipation that it will be used several times, or computing only when actually
needed (even if that means you will often recompute results). In most cases where
you face a tradeoff like this, the right thing to do is bias toward low latency. That is,
don’t try to pre-compute expensive operations unless you have a throughput require-
ment and know by actual measurement that the throughput you are getting is too low.
Pre-computation may seem efficient because it minimizes total use of processor cycles,
but processor cycles are cheap. Unless you are doing one of a handful of monstrously
compute-intensive applications like data mining, animation rendering, or the afore-
mentioned bomb simulations, it is usually better to opt for short startup times and
quick response.

In Unix’s early days this advice might have been considered heretical. Processors
were much slower and cost ratios were very different then; also, the pattern of Unix
use was tilted rather more strongly toward server operations. The point about the value
of low latency needs to be made partly because even newer Unix developers sometimes
inherit an old-time cultural prejudice toward optimizing for throughput. But times
have changed.

Three general strategies for reducing latency are (a) batching transactions that can
share startup costs, (b) allowing transactions to overlap, and (c) caching.

Batching Operations12.4.1

Graphics APIs are frequently written on the assumption that the fixed setup cost for
a physical screen update is large. Consequently, the write operations actually modify
an internal buffer. It is up to the programmer to decide when enough of these updates
have been batched and to issue the call that turns them into a physical screen update.
Picking the right spacing of physical updates can make a great deal of difference to
the feel of the graphics client. Both the X server and the curses(3) library used by
roguelike programs are organized in this way.

Persistent service daemons are a more Unix-specific example of batching. There
are two reasons, one obvious and one subtle, to write persistent daemons (as opposed
to CLI servers that are started up fresh for each session). The obvious reason is to
manage updates to a shared resource. The less obvious reason, which obtains even
for daemons that don’t handle updates, is to amortize the cost of reading in the dae-
mon’s database across multiple requests. A perfect example of this is the DNS service
daemon named(8), which must sometimes handle thousands of requests per second,
each one of which may actually be blocking a user’s Web page load. One of the tactics
that makes named(8) fast is that it replaces parses of expensive on-disk text files
describing DNS zones with accesses to a cache held in memory.

Chapter 12 Optimization294



Overlapping Operations12.4.2

In Chapter 5 we compared the POP3 and IMAP protocols for querying remote-mail
servers. We noted that IMAP requests (unlike POP3 requests) are tagged with a request
identifier generated by the client; the server, when it ships back a response, includes
the tag of the request it pertains to.

POP3 requests have to be processed in lockstep by both client and server; the client
sends a request, waits for the response to that request, and only then can prepare and
ship the next one. IMAP requests, on the other hand, are are tagged so they can be
overlapped. If an IMAP client knows that it wants to fetch multiple messages, it can
stream several fetch requests (each with a different tag) to the IMAP server, without
waiting for responses between them. Responses, each tagged, will come back when
the server is ready; responses to early requests may come in while the client is still
shipping later ones.

This strategy is general to more areas than network protocols. If you want to cut
latency, blocking or waiting on intermediate results is deadly.

Caching Operation Results12.4.3

Sometimes you can get the best of both worlds (low latency and good throughput)
by computing expensive results as needed and caching them for later use. Earlier we
mentioned that named reduces latency by batching; it also reduces latency by caching
the results of previous network transactions with other DNS servers.

Caching has its own problems and tradeoffs, which are well illustrated by one
application: the use of binary caches to eliminate parsing overhead associated with
text database files. Some variants of Unix have used this technique to speed up access
to their password information (the usual motivation was to cut latency on logins at
very large sites).

To make this work, all code that looks at the binary cache has to know that it should
check the timestamps on both files and regenerate the cache if the text master is newer.
Alternatively, all changes to the textual master must be made through a wrapper that
will update the binary format.

While this approach can be made to work, it has all the disadvantages that the
SPOT rule would lead us to expect. The duplication of data means that it doesn’t yield
any economy of storage—it’s purely a speed optimization. But the real problem with
it is that the code to ensure coherency between cache and master is notoriously leaky
and bug-prone. Very frequently updated cache files can lead to subtle race conditions
simply because of the 1-second resolution of timestamps.

Coherency can be guaranteed in simple cases. One such is the Python interpreter,
which compiles and deposits on disk a p-code file with extension .pyc when a Python
library file is first imported. On subsequent runs the cached copy of the p-code is

29512.4 Throughput vs. Latency



loaded unless the source has since changed (this avoids re-parsing the library source
code on every run). Emacs Lisp uses a similar technique with .el and .elc files.
This technique works because both read and write accesses to the cache go through
a single program.

When the update pattern of the master is more complex, however, the synchroniza-
tion code tends to spring leaks. The Unix variants that used this technique to speed
up access to critical system databases were infamous for spawning system-adminis-
trator horror stories that reflected this.

In general, binary cache files are a brittle technique and probably best avoided.
The work that went into implementing a special-purpose hack to reduce latency in
this one case would have been better spent improving the application design so it
doesn’t have a bottleneck there—or even on tuning to improve the speed of the file
system or the virtual-memory implementation.

When you think you are in a situation that demands caching, it is wise to look one
level deeper and ask why the caching is necessary. It may well be no more difficult
to solve that problem than it would be to get all the edge cases in the caching
software right.

Chapter 12 Optimization296


