
13

Complexity:
As Simple As Possible,
but No Simpler

Everything should be made as simple as possible, but no simpler.

—Albert Einstein

At the end of Chapter 1, we summarized the Unix philosophy as “Keep It Simple,
Stupid!”. Throughout the Design section, one of the continuing themes has been the
importance of keeping designs and implementations as simple as possible. But what
is “as simple as possible”? How do you tell?

We’ve held off on addressing this question until now because understanding sim-
plicity is complicated. It needs some of the ideas we developed earlier in the Design
section, especially in Chapter 4 and Chapter 11, as background.

The large questions in this chapter are central preoccupations of the Unix tradition,
some of them motivating holy wars that have simmered for decades. This chapter
starts from established Unix practice and vocabulary, then goes a bit further beyond
it than we do in the rest of the book. We don’t try to develop simple answers to these
questions, because there aren’t any—but we can hope that you will walk away with
better conceptual tools for developing your own answers.

297

Speaking of Complexity13.1

As with previous issues about modularity and interface design, Unix programmers
react to a set of distinctions they have often learned from experience without knowing
how to articulate. Therefore we’ll need to start by developing some terminology.

We will start by defining what software complexity is. We will make some hori-
zontal distinctions between different flavors of complexity, which sometimes have to
be traded off against each other. We will finish by making some even more important
vertical distinctions, between the kinds of complexity we must live with and the kinds
we have the option to eliminate.

The Three Sources of Complexity13.1.1

Questions about simplicity, complexity, and the right size of software arouse a lot of
passion in the Unix world. Unix programmers have learned a view of the world in
which simplicity is beauty is elegance is good, and in which complexity is ugliness
is grotesquery is evil.

Underlying the Unix programmer’s passion for simplicity is a pragmatic fact:
complexity costs. Complex software is harder to think about, harder to test, harder to
debug, and harder to maintain—and above all, harder to learn and use. The costs of
complexity, rough as they are during development, bite hardest after deployment.
Complexity creates places for bugs to nest, from which they will emerge to trouble
the world through the entire lifetime of their software.

All kinds of pressures tend to drag programmers into a swamp of complexity
nevertheless. We’ve examined a rogue’s gallery of these in earlier chapters; feature
creep and premature optimization are the two most notorious. Traditionally, Unix
programmers push back against these tendencies by proclaiming with religious fervor
a rhetoric that condemns all complexity as bad.

So what exactly do we mean by ‘complexity’? This point is worth pinning down,
because it varies by observer.

Unix programmers (like other programmers) tend to focus on implementation
complexity—basically, the degree of difficulty a programmer will experience in at-
tempting to understand a program so he or she can mentally model or debug it.

Customers and users, on the other hand, tend to see complexity in terms of the
program’s interface complexity. In Chapter 11 we discussed the quality of ease and
its inverse, mnemonic load. To a user, complexity correlates closely with mnemonic
load. Poor expressiveness and concision can matter too, if a weak interface forces the
user to perform lots of error-prone or merely tedious low-level operations rather than
a few high-level ones.

Chapter 13 Complexity298

Driven by both of these is a third measure that is much simpler: the total number
of lines of code in the system, its codebase size. In terms of life-cycle costs, this is
usually the most important measure. The reasons go back to perhaps the most important
empirical result in software engineering, one we’ve cited before: the defect density
of code, bugs per hundred lines, tends to be a constant independent of implementation
language. More lines of code means more bugs, and debugging is the most expensive
and time-consuming part of development.

Codebase size, interface complexity and implementation complexity may all rise
together. That is the usual result of feature creep, and why programmers especially
dread it. Premature optimization doesn’t tend to raise interface complexity, but it has
bad effects (often severely bad) on implementation complexity and codebase size.
But those sorts of arguments against complexity are relatively easy to win; the difficult
ones begin when these three measures have to be traded off against each other.

We’ve already mentioned one situation in which two measures vary in opposite
directions: a user interface that has been designed primarily to preserve implementation
simplicity, or keep codebase size down, may simply dump low-level tasks on the user.
(A crude example of this, barely imaginable to a Unix programmer but all too common
elsewhere, might be an editor that lacked a global-replace feature.) Though this sort
of design failure is all too common, it does not traditionally have a name. We’ll call
it a manularity trap.

Pressure to keep the codebase size down by using extremely dense and complicated
implementation techniques can cause a cascade of implementation complexity in the
system, leading to an un-debuggable mess. This used to happen frequently when fitting
programs onto very small systems demanded assembler programming or tricks like
self-modifying code; nowadays it is uncommon except in embedded systems, and
rapidly becoming rare even there. This kind of design failure doesn’t have a traditional
name, but one might call it a blivet trap, after an old Army term for the results of at-
tempting to stuff ten pounds of horse manure into a five-pound bag.

The blivet trap won’t appear in our case studies, but we’ve defined it for contrast
with its opposite. It can happen that the designers of a project are so wary of imple-
mentation complexity that they reject a complex but unified way to solve a whole
class of problems in favor of lots of duplicative, ad-hoc code that solves each individ-
ual one in turn. The result is bloat in the size of the codebase, and maintainability
problems more severe than if the unified method had been accepted. For example, a
Web project that really needs a centralized relational database behind its pages might
instead spawn several different keyed data files containing information that has to be
re-integrated at page generation time. This sort of failure is all too common. It doesn’t
have a traditional name; we’ll call it an adhocity trap.

29913.1 Speaking of Complexity

These are the three faces of complexity, and some of the traps designers fall into
in attempts to avoid them.1 We’ll see more examples when we get to the case studies
later in the chapter.

Tradeoffs between Interface and Implementation
Complexity

13.1.2

One of the most perceptive observations ever made about the Unix tradition by
someone standing outside it was contained in Richard Gabriel’s paper called Lisp:
Good News, Bad News, and How to Win Big [Gabriel]. Gabriel is a long-time leader
of the Lisp community, and the paper was primarily an argument for a particular style
of Lisp design, but the author himself acknowledges that it is now remembered pri-
marily for the section called ‘The Rise of Worse Is Better’.

The paper argued that Unix and C have the characteristics of viruses, and that in
the evolutionary struggle among software designs traits like implementation simplic-
ity and portability which lead to rapid propagation (infectiousness) are more effective
than correctness and completeness of the design. Gabriel came so close to anticipating
the ‘many-eyeballs‘ effect on open-source software that the open-source community
retrospectively adopted him as one of its theorists after 1997.

Less remembered is that the Gabriel’s central argument was about a very specific
tradeoff between implementation and interface complexity, one which rather exactly
fits the categories we have examined in this chapter. Gabriel contrasts an ‘MIT’
philosophy most valuing interface simplicity with a ‘New Jersey’ philosophy most
valuing implementation simplicity. He then proposes that although the MIT philosophy
leads to software that is better in the abstract, the (worse) New Jersey model has better
propagation characteristics. Over time, people pay more attention to software written
in the New Jersey style, so it improves faster. Worse becomes better.

In fact, the MIT and New Jersey philosophies have analogs as conflicting tendencies
within the Unix design tradition itself. One strain of Unix thinking emphasizes small
sharp tools, starting designs from zero, and interfaces that are simple and consistent.
This point of view has been most famously championed by Doug McIlroy. Another
strain emphasizes doing simple implementations that work, and that ship quickly,
even if the methods are brute-force and some edge cases have to be punted. Ken
Thompson’s code and his maxims about programming have often seemed to lean in
this direction.

The tension between these approaches arises precisely because one can sometimes
get a simpler interface if one is willing to pay implementation complexity for it, or

1. The terms we have invented for these design traps, unlikely as they may sound, come from
established hacker jargon described in [Raymond96].

Chapter 13 Complexity300

vice versa. Gabriel’s original example, about how system calls that do long operations
handle interrupts they cannot hold or mask, is still one of the best. Under the MIT
philosophy, the right thing to do would be to back out of the system call and automat-
ically resume it once the interrupt has been handled; this is harder to implement but
leads to a simpler interface. Under the New Jersey philosophy, the system call would
return an error indicating that it has been interrupted and the user must re-execute;
this can be implemented far more simply, but leads to a programming interface that
is more difficult to use.

Both approaches have been tried. Old Unix hands will instantly think of System-
V-style vs. BSD-style handling of software signals; the latter follows the MIT
philosophy, while the former hails from New Jersey. Underlying the choice between
them is a pressing question that has nothing directly to do with the software’s infec-
tiousness: if your goal is to hold down total global complexity, where are you most
willing to pay to do that? Where should you be most willing to pay?

One epochal example not mentioned in Gabriel’s paper is from distributed hypertext
systems. Early distributed-hypertext projects such as NLS and Xanadu were severely
constrained by the MIT-philosophy assumption that dangling links were an unaccept-
able breakdown in the user interface; this constrained the systems to either browsing
only a controlled, closed set of documents (such as on a single CD-ROM) or imple-
menting various increasingly elaborate replication, caching, and indexing methods
in an attempt to prevent documents from randomly disappearing. Tim Berners-Lee
cut through this Gordian knot by punting the problem in classic New Jersey style.
The simplicity of implementation he bought by allowing “404: Not Found” as a re-
sponse was what made the World Wide Web lightweight enough to propagate
and succeed.

Gabriel himself, while sticking with the observation that ‘worse’ is more infectious
and tends to win in the end, has publicly changed his mind several times about the
underlying complexity-related question of whether or not this is actually a good
thing. His uncertainty mirrors a lot of ongoing design debates within the Unix
community.

We cannot offer a one-size-fits-all answer. As with most of the large questions in
this chapter, good taste and engineering judgement will demand different answers in
different situations. The important thing is to develop the habit of thinking carefully
about this issue on each and every one of your designs. As we have observed
before in discussing software modularity, complexity is a cost you must budget
very carefully.

Essential, Optional, and Accidental Complexity13.1.3

In an ideal world, Unix programmers would craft only small, perfect gems of software,
each minimal, each elegant, each perfect. But one of the unfortunate things about re-

30113.1 Speaking of Complexity

ality is that it often poses complex problems that demand complex solutions. You
can’t control a jetliner with an elegant ten-line procedure. There are too many pieces
of equipment, too many channels and interfaces, too many different processors—too
many different subsystems defined by independently operating human beings who
often don’t agree even on fundamental conventions. Even if you are successful at
making all the individual software parts of an avionics system elegant, integration is
likely to produce a large, complex, and grubby body of code with (one hopes) the
single virtue that it will actually work.

Jetliners have essential complexity. There is a rather sharp point past which it’s
not possible to trade away features for simplicity, because the plane has to stay in the
air. Because of that very fact, avionics control systems do not tend to spawn religious
wars about complexity—and Unix programmers tend to stay away from them.

Jetliners are certainly not immune from system failures due to overcomplexity.
But the design issues are easier to discern and think about in software for which the
requirements are more flexible, in which it is easy to trade off between anticipated
features and complexity. (Here, and in the rest of this chapter, we will use ‘feature’
in a very general sense that includes things like performance gains or overall degree
of interface polish.)

To sharpen our vision, we need to begin by noticing a difference between accidental
complexity and optional complexity.2 Accidental complexity happens because someone
didn’t find the simplest way to implement a specified set of features. Accidental
complexity can be eliminated by good design, or good redesign. Optional complexity,
on the other hand, is tied to some desirable feature. Optional complexity can be
eliminated only by changing the project’s objectives.

When we fail to distinguish between optional and accidental complexity, design
debates become seriously confused. Questions about what a project’s objectives are
get confused with questions about the aesthetics of simplicity, and whether people
have been sufficiently clever.

Mapping Complexity13.1.4

So far, we’ve developed two different scales for thinking about complexity. These
scales are actually orthogonal to each other. Figure 13.1 may help clarify the relation-
ships. Each of the nine boxes of the figure lists a common source of a particular kind
of complexity.

2. The distinction between accidental and optional complexity means that the categories we’re
discussing here are not the same as essence and accident in Fred Brooks’s essay No Silver
Bullet [Brooks], but they have common ancestry in philosophy.

Chapter 13 Complexity302

Violating the SPOT rule Premature optimization Non-orthogonality

Methodology overhead
EVERYTHING

ELSE!
Convenience features

Development tools Core data structures Functional requirements

Codebase size
Implementation

complexity
Interface

complexity

Sources of complexity

Accidental
complexity

Optional
complexity

Essential
complexity

Kinds of
complexity

Figure 13.1: Sources and kinds of complexity.

We’ve touched on some of these varieties of complexity earlier in this book, espe-
cially the accidental ones. In Chapter 4 we saw that accidental interface complexity
often comes from non-orthogonality in the interface design—that is, failing to carefully
factor the interface operations so that each does exactly one thing. Accidental code
complexity (making code more complicated than it needs to be to get the job done)
often results from premature optimization. Accidental codebase bloat often results
from violating the SPOT rule, duplicating code or organizing it poorly so that oppor-
tunities for reuse aren’t recognized.

Essential interface complexity usually can’t be cut without trimming the basic
functional requirements for the software (a theme we’ll develop further in this chapter’s
case studies). Essential codebase size is related to choice of development tools because,
if the feature list is held constant, the most important factor in codebase size is prob-
ably the choice of implementation language (as we implied in Chapter 8).

Sources of optional complexity are the most difficult to make useful generalizations
about, because they so often depend on delicate judgments about which features it is
worth paying the complexity cost for. Optional interface complexity often comes from
adding convenience features that make life easier for users but aren’t essential to the
function of the program. Optional increases in codebase size (supposing the user-vis-
ible features and the algorithms used are held constant) can often come from various
sorts of practices intended to make it more maintainable—adding mode comments,
using long variable names, and so forth. Optional implementation complexity tends
to be driven by everything that touches a project.

The sources of complexity have to be grappled with in different ways. Codebase
size can be attacked with better tools. Implementation complexity can be addressed
with better choice of algorithms. Interface complexity has to be addressed with better

30313.1 Speaking of Complexity

interaction design, a skill involving considerations of ergonomics and user psychology.
This skill is less common (and possibly more difficult) than writing code.

Attacking the kinds of complexity, on the other hand, has to be done more with
insight than with methods. You cut accidental complexity by noticing that there is a
simpler way to do things. You cut optional complexity by making context-dependent
judgments about what features are worthwhile. You can only cut essential complexity
by having an epiphany, fundamentally redefining the problem you are addressing.

When Simplicity Is Not Enough13.1.5

The failure mode that goes with the Unix tradition’s insistence on simplicity is that
Unix programmers often talk (and sometimes even behave) as though all optional
complexity is accidental. More than this, there is a strong bias in the Unix tradition
toward removing features rather than accepting optional complexity.

The case for this attitude is easy to make (indeed, we spend much of this book
making it). Clean minimalism makes us feel virtuous on many levels, and designing
for it is a valuable counter to the natural tendency of software systems to develop
ever-more-elaborate encrustations of ill-considered features. But computing resources
and human thinking time, like wealth, find their justification not in being hoarded but
in being spent. As with other forms of asceticism, one has to ask when design mini-
malism stops being a valuable form of self-discipline and starts being a mere hair
shirt—a way to indulge those feelings of virtue at the expense of actually using that
wealth to get work done.

This is a perilous question, all too easily turned into an argument for abandoning
good design discipline altogether. Unix old hands often shy away from it, fearing that
failing to hold the hardest possible line against complexity and bloat will lead us
inexorably to damnation. But it’s also a necessary question. We’ll tackle it directly
when analyzing this chapter’s case studies.

A Tale of Five Editors13.2

Now we’re going to use five different Unix editors as case studies. It will be helpful
to bear in mind a set of benchmark tasks as we examine these designs:

• Plain-text editing. Manipulating plain ASCII (or, in this internationalized age,
perhaps Unicode) files with no structure known to the editor above byte level,
or perhaps line level.

• Rich-text editing. Editing of text with attributes; these might include font changes,
color, or other sorts of properties of text spans (such as being a hyperlink). Editors

Chapter 13 Complexity304

that can do this have to be able to translate between some presentation of the
attributes in the user interface and some on-disk representation of the data (such
as HTML, XML, or other rich-text formats.)

• Syntax awareness. An editor that is syntax-aware knows that input events have
a grammar, and does things like automatically changing the indent level when
it recognizes the beginning or end of a block scope in a programming language.
Editors that are syntax-aware also commonly highlight syntax with colors or
distinguished fonts.

• Output parsing of batch command output. The commonest case of this in the
Unix world is running a C compilation from inside the editor, trapping the error
messages, and then being able to step through the error locations without leaving
the editor.

• Interaction with helper subprocesses that persist and maintain state between
editor commands. This capability, when present, has powerful consequences:

• It’s possible to drive a version-control system from inside the editor, per-
forming file checkins and checkouts without dropping out to a shell window
or separate utility.

• It’s possible to front-end a symbolic debugger inside the editor, such that
(for example) when the run stops on a breakpoint the appropriate file and
line is automatically visited.

• It’s possible to edit remote files within the editor, by having it recognize
when a filename refers to another host (recognizing some syntax like
/user@host:/path/to-file). Provided you have the right access,
such an editor can automatically run a utility like scp(1) or ftp(1) to fetch
a local copy, then automatically copy the edited version back to the remote
location at file-save time.

All our case studies can edit plain text. (The reader should not take this capability
for granted—there are many things called editors, such as ‘word processors’ that are
too specialized to do this!) We begin seeing variable degrees of optional complexity
in how they handle the more complex tasks.

30513.2 A Tale of Five Editors

ed13.2.1

ed(1) is the truly Unix-minimalist way of plain-text editing. It dates from the days of
teletypes.3 It has a simple, austere CLI, and there is no screen display. In the following
listing, computer output is emphasized.

ed sample.txt
sample.txt: No such file or directory
This is a comment line, not a command.
The message above warns that the sample.txt file is newly created.
a
the quick brown fox
jumped over the lazy dog
.
That was an append command, which added text to the file.
The dot on a line by itself terminated the append.
1s/f[a-z]x/dragon/
On line 1, replace the first substring matching an f followed by a
lowercase alphabetic followed by x with ‘dragon’. The
substitute command accepts basic regular expressions.
1,$p
the quick brown dragon
jumped over the lazy dog
Print all lines from 1 to the last.
w
51
That wrote the file to disk. The ‘q’ command ends the
editing session.
q

Unbelievable as it may seem to a modern reader, most of Unix’s original code was
written with this editor. The reader with DOS experience may recognize here the
original on which EDLIN was (crudely) modeled.

If one defines the job of an editor simply as enabling the user to create and modify
plain text files, ed(1) is entirely sufficient for the job. Importantly to the Unix view
of design correctness, it does nothing else. Many old-school Unix programmers
half-seriously maintain that all editors with more features than ed has are simply
bloated—and a few still who seriously believe this.

Appropriately, ed was Ken Thompson’s deliberate simplification of the earlier
qed[RitchieQED] editor—which was very similar (and the first editor to use regular
expressions in the characteristic Unix way) but had multiple-buffer capability that
Ken deliberately discarded. He judged it not worth the additional complexity.

3. Younger readers may not be aware that terminals used to print. On paper. Very slowly.

Chapter 13 Complexity306

A notable characteristic of ed(1) and all its descendants is the object-operation
format of its commands (the session example shows an explicit range on the ‘p’
command). There is a relatively powerful syntax for specifying line ranges, either
numerically, or by regular-expression pattern match, or by special shorthands for the
current and last line. Most editor operations can be applied to any range. This is a
good example of orthogonality.

Nowadays, ed(1) is primarily used as a program-driven editing tool in scripts—a
role to which editors with more elaborate modes of interactivity are unsuited. There
is a close variant called ex(1) which adds a few useful interactivity features such as
command prompts; it is occasionally useful in rare cases when editing must be done
over a slow serial line, or in certain unusual crash-recovery situations where the library
support needed to run other editors is not accessible. For these reasons, every Unix
includes an ed implementation and most include ex as well.

The sed(1) stream editor mentioned in Chapter 9 is also closely related to ed; many
of the basic commands are the same, though designed to be invoked through command-
line switches rather than from standard input.

Almost all Unix programmers have strayed from the path of austerity and minimal-
ist virtue enough to normally use editors that at least present a roguelike, screen-ori-
ented interface. However, the fact that the religion of ed persists4 says a great deal
that is worth noting about the Unix mindset.

vi13.2.2

The original vi(1) editor was the first attempt to bolt a visual, roguelike interface onto
the command set of ed(1). Like ed, its commands are generally single keystrokes,
and it is particularly well suited to use by touch-typists.

The original vi didn’t have mouse support, editing menus, macros, assignable key
bindings, or any form of user customization. In line with the religion of ed, vi’s parti-
sans considered the lack of these features a virtue. On this view, one of vi’s most im-
portant virtues is that you can start editing immediately on a new Unix system without
having to carry along your customizations or worrying that the default command
bindings will be dangerously different from what you’re used to.

One characteristic of vi that beginners tend to find frustrating is a result of its terse
single-keystroke commands. It has a moded interface—you are either in command
mode or in text-insertion mode. In text-insertion mode, the only commands that work

4. The religion of ed is exemplified by a famous Usenet posting which the reader may be able
to find with a Web search for “Ed is the standard editor”. While it is clearly intended as parody,
it is by no means clear that the author was entirely joking. Most Unix hackers would read it
as an example of “Ha ha, only serious.”

30713.2 A Tale of Five Editors

are the ESC key for mode exit and (on newer versions) the cursor-movement keys.
In command mode, typing text will be interpreted as commands and do odd (and
probably destructive) things to your content.

On the other hand, one property of the command set that vi fans particularly tout
is the object-operation format it inherited from ed. Most of the extended commands
also operate in a natural way on any line range.

Over the years, vi has bulked up considerably. Modern versions add mouse support,
editing menus, unlimited undo (the original vi could only undo the last command),
multiple files in separate buffers, and customization with a run-control file. However,
the use of run-control files is still unusual, and in contrast to Emacs, the use of embed-
ded general-purpose scripting has never caught on. Instead, vi implementations have
grown individual capabilities to do things, like syntax awareness of C code and output
parsing of C compiler error messages, by adding C code to vi itself. Subprocess inter-
action is not supported.

Sam13.2.3

The Sam editor5 was written by Rob Pike at Bell Labs in the mid-1980s. Sam was
designed for the Plan 9 operating system, which we’ll survey in Chapter 20. While
the Sam editor is not widely known outside the Labs, it’s favored by many of the
original Unix developers who went on to work on Plan 9, including Ken
Thompson himself.

Sam is a fairly straightforward descendant of ed, remaining much closer to its
parent than vi. Sam incorporates only two new concepts: a curses-style text display
and text selection with the mouse.

Each Sam session has exactly one command window, and one or more text win-
dows. Text windows edit text, and command windows accept ed-style editing com-
mands. The mouse is used to move between windows, and to select text regions
within text windows. This is a clean, orthogonal, modeless design that discards most
of the interface complexity of vi.

Most commands operate by default on a select region that can be painted with a
mouse drag operation. The select region for a command can also be set by specifying
a line range in the fashion of ed, but Sam gains considerable power from the fact that
the user can select at finer granularity than a line range. Because the mouse is available
to do selections and rapidly change focus between buffers (including the command
buffer), Sam needs no equivalent of the default (command) mode of vi. The hundreds
of extended vi commands are unnecessary and, therefore, omitted. Overall, Sam adds

5. http://plan9.bell-labs.com/sys/doc/sam/sam.html

Chapter 13 Complexity308

only about a dozen commands to the seventeen or so in the ed set, for a total of
about thirty.

Four of the new commands in Sam join two inherited from ed(1) and vi(1), as
ways to apply regular expressions to the task of selecting files and file regions to op-
erate on. These provide limited but effective loop and conditional facilities to the
command language. There is, however, no way to name or parameterize command-
language procedures. Nor can the language do interactive control of a subprocess.

An interesting feature of Sam is that it’s split into two parts. separating a back end
that manipulates files and does searches from a front end that handles the screen in-
terface. This instance of the “separated engine and interface” chapter has the immediate
practical benefit that, though the program has a GUI, it can run easily over a low-
bandwidth connection to edit files on a remote server. Also, the front and back ends
can be retargeted relatively easily.

Sam, like recent versions of vi, has infinite undo. By design, it supports neither
rich-text editing, nor output parsing, nor subprocess interaction.

Emacs13.2.4

Emacs is undoubtedly the most powerful programmer’s editor in existence. It’s a big,
feature-laden program with a great deal of flexibility and customizability. As we ob-
served in the Chapter 14 section on Emacs Lisp, Emacs has an entire programming
language inside it that can be used to write arbitrarily powerful editor functions.

Unlike vi, Emacs doesn’t have interface modes; instead, commands are normally
control characters or prefixed with an ESC. However, in Emacs it is possible to bind
just about any key sequence to any command, and commands can be stock or cus-
tomized Lisp programs.

Emacs can edit multiple files, each in a separate buffer, and supports moving text
among the buffers. Versions running under X have native mouse support.

The Lisp programs bound to Emacs keystrokes can perform arbitrary text transfor-
mations on a buffer. This capability is heavily used, among other things to define
syntax-aware and rich-text editing modes for dozens of different languages and markup
formats (beginning with support and color highlighting of C code as in vi, but going
way beyond that). Each mode is simply a library file of Lisp code that is loaded
on demand.

Emacs Lisp programs can also interactively control arbitrary subprocesses. Some
notable consequences of this capability were listed earlier, including the ability to
serve as a front end for version-control systems, debuggers, and the like.

30913.2 A Tale of Five Editors

The designers of Emacs6 built a programmable editor that could have task-related
intelligence customized into it for hundreds of different specialized editing jobs. They
then gave it the ability to drive other tools. As a result, Emacs supports dealing with
all things textual in one shared context—files, mail, news, debugger symbols. It can
serve as a customizable front end to any command with an interactive textual interface.

It is a common joke, both among fans and detractors of Emacs, to describe it as
an operating system masquerading as an editor. That overstates the case, but Emacs
certainly does fulfill the role occupied by integrated development environments (IDEs)
under non-Unix operating systems (a theme to which we shall return in Chapter 15).

This power comes at a price in complexity. To use a customized Emacs you have
to carry around the Lisp files that define your personal Emacs preferences. Learning
how to customize Emacs is an entire art in itself. Emacs is correspondingly harder to
learn than vi.

Wily13.2.5

The wily editor7 is a clone of the Plan 9 editor acme.8 It shares some facilities with
Sam, but is intended to provide a fundamentally different user experience. Although
Wily probably sees the least widespread use of any of these editors, it is interesting
because it illustrates a different and arguably more Unixy way of implementing an
Emacs-like programmable editor.

Wily could be described as a minimalist IDE, an implementation of Emacs-style
extensibility without the decades of accompanying cruft. In Wily, even global search
and replace, that sine qua non of Unix editors, is supplied by an external program.
The built-in commands relate almost exclusively to windowing operations. Wily is
designed from the ground up to use the mouse as much, and as well, as possible.

Wily attempts to replace not only conventional editors but conventional terminal
windows such as xterm(1) as well. In Wily, any piece of text within the main window
(which contains multiple non-overlapping Wily windows) can be an action or a search
expression. The left mouse button is used to select text, the middle button to execute

6. The designers of Emacs were Richard M. Stallman, Bernie Greenberg, and Richard M.
Stallman. The original Emacs was Stallman’s invention, the first version with an embedded
Lisp was Greenberg’s, and the now-definitive version is Stallman’s derived from Greenberg’s.
No complete account of the design history has been written in 2003, but Greenberg’s Multics
Emacs: The History, Design, and Implementation is illuminating and readily discoverable via
keyword search on the Web.

7. http://www.cs.yorku.ca/~oz/wily

8. http://plan9.bell-labs.com/sys/doc/acme/acme.html

Chapter 13 Complexity310

text as a command (either built-in or external), and the right button to search either
Wily’s buffers or the file system for text. No permanent or popup menus are required.

In Wily, the keyboard is used only to enter text. Shortcuts are achieved not by
special use of the keyboard, but by holding down more than one mouse button at the
same time. These shortcuts are always equivalent to using the middle button on some
built-in command.

Wily can also be used as the front end for C, Python, or Perl programs, reporting
to them whenever a window is changed or an execute or search command is performed
with the mouse. These plugins function analogously to Emacs modes, but don’t run
in the same address space with Wily; instead, they communicate with it via a very
simple set of remote procedure calls. Wily comes packaged with an xterm analog and
a mail tool which uses it as the editing front end.

Because Wily depends on the mouse so heavily, it cannot be used on a charac-
ter-cell-only console display; nor can it be used over a remote link without X
forwarding. As an editor, Wily is designed for editing plain text; it has only two fonts
(one proportional and one fixed-width) and has no mechanism that could support rich-
text editing or syntax awareness.

The Right Size for an Editor13.3

Now let us examine our case studies using the complexity categories we developed
at the beginning of this chapter.

Identifying the Complexity Problems13.3.1

Every text editor has a certain amount of essential complexity. At minimum, it has
to maintain an internal buffer copy of the file or files the user is editing. Functions to
import and export file data are a minimum requirement (usually from and to disk,
though the stream editor sed(1) is an interesting exception). Some way to modify the
buffer must be supported, though we cannot specify what way without describing
specific features that are optional. Our four examples show widely varying levels of
optional and accidental complexity beyond this.

Of all of these, ed(1) has the least complexity. Almost the only non-orthogonal
feature in its command set is the fact that many of its commands can take a ‘p’ or ‘l’
suffix to print or list command results. Even after three decades of feature additions
there are fewer than thirty editing commands, and the normal working set for most
users will be less than a dozen. There is not much in the way of optional complexity
that could be removed here, and it’s hard to identify any accidental complexity at all.
The user interface of ed is strictly compact.

31113.3 The Right Size for an Editor

On the flip side, the ed interface is not really suitable for editing tasks even as basic
as rapidly flipping through a text file. One has to limit one’s objectives pretty sharply
for ed to become an acceptable solution for interactive editing.

Suppose, then, that we add “support visual browsing and editing of multiple files”
as an objective? Then Sam seems not very far from being the minimal ed extension
that could achieve this. The fact that the designers did not change the semantics of
the inherited ed commands is notable; they kept an existing, orthogonal set and added
a relatively small set of capabilities that are themselves orthogonal.

One large increase in optional (implementation) complexity is Sam’s infinite-undo
capability. Another significant one is the new regular-expression-based loop and iter-
ation facility in the command language. These, and the fact that the mouse can be
used as a selection device, are about all that distinguish Sam from a hypothetical ed
with a mouse-and-windows interface.

Without a thorough code audit it’s difficult to be sure, but at the design level it’s
hard to identify any accidental complexity in Sam. The interface is at least semi-
compact and arguably strictly compact. This editor lives up to the very highest stan-
dards of Unix design—unsurprisingly, given its provenance.

By contrast, vi looks rather bloated and flabby. There are hundreds of commands,
many of them duplicative. These are at best optional complexity, and perhaps acciden-
tal. At a guess, most users don’t know more than 5% of the command set. With the
example of Sam before us, it’s fair to wonder why the interface complexity of vi
is so high.

In Chapter 11 we described the effect of the absence of standard arrow keys on
early roguelike programs; vi was one of these. When vi was built, its author knew
that many of his users would need to be able to use the cursor motion keys traditional
on Unix glass teletypes. This made a modal interface inevitable. Once the hjkl keys
had mode-dependent meanings in an edit buffer, it was all too easy to fall into the
habit of adding new commands in an ad-hoc way.

Sam, designed as it is to depend on a bitmapped display with both arrow keys and
a mouse, can be much cleaner. And it is.

But the clutter of vi commands is a relatively superficial problem. It’s interface
complexity, yes, but of a kind most users can and do ignore (the interface is semi-
compact in the sense we developed in Chapter 4). The deeper problem is an adhocity
trap. Over the years, vi has had progressively more and more special-purpose C code
bolted onto it to perform tasks that Sam refuses to do and that Emacs would attack
with Lisp code modules and subprocess control. The extensions are not, as in Emacs,
libraries loaded as needed; users pay the overhead for the resulting code bloat all the
time. As a result, the size difference between a modern vi and a modern Emacs is not
nearly as great as one might expect; in mid-2003 on an Intel-architecture machine,
it’s 1500KB for GNU Emacs versus 900KB for vim. There is a whole lot of both op-
tional and accidental complexity in that 900KB.

Chapter 13 Complexity312

For vi partisans, not having an embedded scripting language—not beingEmacs—has
become an identity issue, a central part of the shared myth that vi is a lightweight
editor. While vi fans like to talk about filtering buffers with external programs and
scripts to do what Emacs’s embedded scripting does, the reality is that vi’s “!” com-
mand cannot filter regions of an edit buffer selected at finer granularity than a range
of lines (Sam and Wily, though they have no more subprocess management than vi
does, can at least filter arbitrary text ranges, not just line ranges). All knowledge of
file formats and syntaxes that vary at a finer granularity (and most do) has to be built
in to C code if vi is going to have it available at all. There is thus little prospect that
the codebase-size ratio between Emacs and vi will improve in favor of vi; indeed, it
seems likely to get worse.

Emacs is sufficiently large, and has a sufficiently tangled history, to make separating
its optional from its accidental complexity quite a challenge. We can at least begin
by trying to separate the dispensable accidents of the Emacs design from its indispens-
able essentials.

Perhaps the most conspicuously dispensable part of the Emacs design is Emacs
Lisp. It is essential to what Emacs does that it feature what we nowadays call an em-
bedded scripting language, but Emacs would be little different in capability if that
language had been Python or Java or Perl. At the time Emacs was designed in the
1970s, however, Lisp was about the only language that had the characteristics (includ-
ing unlimited-extent types and garbage collection) to fit it to the job.

Much in the particulars of the way emacs handles event processing and drives a
bitmapped display (including the support for internationalization) is accidental as
well. The one great schism in its history (the GNU Emacs/XEmacs fork) was over
these issues, and demonstrates that nothing in the rest of the design prefers or requires
any one event model.

On the other hand, the ability to bind arbitrary event sequences to arbitrary built-
in or user-defined functions is indispensable. The scripting language could change
and the event model could change, but without the anything-goes polymorphism in
the way they are connected, the Emacs design would be both unrecognizable and
crippled. Extension modes would have to fight each other for ownership of a limited
event set, and activating multiple cooperating modes on the same buffer would be
difficult or impossible.

The huge library of extension modes shipped with Emacs is accidental as well.
The ability to construct such extensions may be essential, but the particular set we
have is a product of history and chance. They could all be different or replaced; the
result would still, recognizably, be Emacs.

But subprocess interaction is indispensable. Without it, Emacs modes could not
perform the expected IDE-like integration and front-ending of many different tools.

Experience with small editors that clone the default keybindings and appearance
of Emacs without emulating its extensibility is instructive. There have been several

31313.3 The Right Size for an Editor

such clones, of which the best known are probably MicroEmacs and pico, but none
have ever acquired significant mindshare.

Having identified accident and essence in the Emacs design helps us get a handle
on which of its complexity is optional and which accidental. But, more importantly,
they help us see past the superficial differences between Emacs and the previous three
editors we have considered, to the really critical difference: the fact that the objectives
of the Emacs design are far more broad. Emacs wants to be a unified interface to all
tools that operate on text.

Wily makes an interesting contrast with Emacs. As with Sam, the amount of op-
tional complexity is low; the Wily user interface can be succinctly but effectively de-
scribed in a single page.

But this elegance comes with a price; it is not possible to bind functions to any
keystrokes or input gestures other than a restricted set of mouse chords. Instead, every
editor function other than very basic text insertion and deletion has to be implemented
with a program outboard of the editor, either a standalone script or a specialized
symbiont process listening to Wily input events. (The former technique relies on
outboard program startups being fast enough not to produce noticeable interface lag,
something which was emphatically not the case in either Emacs’s natal environment
or under the Unixes it was first ported to.)

Optional complexity which Emacs would implement in Lisp extension modes is
instead distributed through specialized symbionts; each has to know the special Wily
messaging interface. An advantage of this approach is that such symbionts can be
written in any language the user chooses. In addition, the symbionts (because they
run outboard) cannot adversely affect each other or the Wily core (which is not true
of Emacs modes). A disadvantage is that Wily itself cannot directly do subprocess
interaction with ordinary Unix tools at all.

In this and other ways, wily’s distributed scripting is not as powerful as the embed-
ded scripting of Emacs. The scope of Wily’s objectives is correspondingly narrower;
the authors disclaim any interest in syntax-aware editing, or rich text, for example,
and neither Wily nor its Plan 9 ancestor acme can do these things.

This brings us to another, and sharper way of posing the central question of this
chapter: When do large objectives justify a large program?

Compromise Doesn’t Work13.3.2

The comparison between Sam and vi suggests strongly that, at least where editors
are concerned, attempts to compromise between the minimalism of ed and the all-
singing-all-dancing comprehensiveness of Emacs don’t work very well; vi attempts
this, and ends up with neither virtue. Instead, it falls into an adhocity trap. Wily avoids
the adhocity trap, but cannot match the power of Emacs and must demand a custom

Chapter 13 Complexity314

process interface from each of its interactive symbionts in order to come
anywhere close.

Evidently something about editors tends to push them in the direction of increasing
complexity. In the case of vi, that something is not hard to identify; it’s the desire for
convenience. While ed may be theoretically adequate, very few people (other than
perhaps Ken Thompson himself) would forgo screen-oriented editing to make a
statement about software bloat.

More generally, programs that mediate between the user and the rest of the universe
notoriously attract features. This includes not just editors but Web browsers, mail and
newsgroup readers, and other communications programs. All tend to evolve in accor-
dance with the Law of Software Envelopment, aka Zawinski’s Law: “Every program
attempts to expand until it can read mail. Those programs which cannot so expand
are replaced by ones which can.”

Jamie Zawinski, inventor of the Law (and one of the principal authors of the
Netscape and Mozilla Web browsers), maintains more generally that all really useful
programs tend to turn into Swiss Army knives. The commercial success of large,
integrated application suites outside the Unix world tends to confirm this, and directly
challenges the Unix philosophy of minimalism.

To the extent Zawinski’s Law is correct, it suggests that some things want to be
small and some want to be large, but the middle ground is unstable. The superficial
problems with vi can be put down to history, but the deeper ones trace back to the
combination of steady pressure to add features with refusal to embed the scripting
and subprocess-control features that vi partisans associate with excessive size. On a
different level, accepting that there would be two modes in the interface (insertion
versus character-motion) opened a can of worms—it became far too easy to add new
commands without thinking about their complexity impact on the overall design.

The examples of Emacs and Wily further suggest why some things want to be
large: so that several related tasks can share context. Editing and version control (or
editing and mail, editing and symbolic debugging, etc.) are separate tasks from the
point of view of the implementers—but users would often prefer to have one big
environment that lets them point at pieces of text, rather than spend time and attention
ping-ponging between several programs that each have to have the same filename or
the contents of some cut buffer handed to them.

More generally, let’s suppose we view the entire Unix environment as a single
work of design by community. Then the religion of “small, sharp tools”, the pressure
to keep interface complexity and codebase size down, may lead right to a manularity
trap—the user has to maintain all the shared context himself, because the tools won’t
do it for him.

Returning to the specific context of editors, Sam shows us that vi is the wrong
thing. Wily is a valiant effort to avoid the vastness of Emacs that falls short because
it can’t be syntax-aware. But Wily, or some realization of the Emacs design ideas

31513.3 The Right Size for an Editor

cleaned up and stripped of historical baggage, might be the right thing. The value of
optional complexity depends on the objectives you choose, and the ability to share
context among all the text-oriented tools related to a task is valuable.

Is Emacs an Argument against the Unix Tradition?13.3.3

The traditional Unix view of the world, however, is so attached to minimalism that it
isn’t very good at distinguishing between the adhocity-trap problems of vi and the
optional complexity of Emacs.

The reason that vi and emacs never caught on among old-school Unix
programmers is that they are ugly. This complaint may be “old Unix”
speaking, but had it not been for the singular taste of old Unix, “new Unix”
would not exist.

—Doug McIlroy

Attacks on Emacs by vi users—along with attacks on vi by the hard-core old-
school types still attached to ed—are episodes in a larger argument, a contest between
the exuberance of wealth and the virtues of austerity. This argument correlates with
the tension between the old-school and new-school styles of Unix.

The “singular taste of old Unix” was partly a consequence of poverty in exactly
the same way that Japanese minimalism was—one learns to do more with less most
effectively when having more is not an option. But Emacs (and new-school Unix,
reinvented on powerful PCs and fast networks) is a child of wealth.

As, in a different way, was old-school Unix. Bell Labs had enough resources
so that Ken was not confined by demands to have a product yesterday. Recall
Pascal’s apology for writing a long letter because he didn’t have enough
time to write a short one.

—Doug McIlroy

Ever since, Unix programmers have maintained a tradition that exalts the elegant
over the excessive.

The vastness of Emacs, on the other hand, did not originate under Unix, but was
invented by Richard M. Stallman within a very different culture that flourished at the
MIT Artificial Intelligence Lab in the 1970s. The MIT AI lab was one of the wealthiest
corners of computer-science academia; people learned to treat computing resources
as cheap, anticipating an attitude that would not be viable elsewhere until fifteen years

Chapter 13 Complexity316

later. Stallman was unconcerned with minimalism; he sought the maximum power
and scope for his code.

The central tension in the Unix tradition has always been between doing more
with less and doing more with more. It recurs in a lot of different contexts, often as
a struggle between designs that have the quality of clean minimalism and others that
choose expressive range and power even at the cost of high complexity. For both sides,
the arguments for or against Emacs have exemplified this tension since it was first
ported to Unix in the early 1980s.

Programs that are both as useful and as large as Emacs make Unix programmers
uncomfortable precisely because they force us to face the tension. They suggest that
old-school Unix minimalism is valuable as a discipline, but that we may have fallen
into the error of dogmatism.

There are two ways Unix programmers can address this problem. One is to deny
that large is actually large. The other is to develop a way of thinking about complexity
that is not a dogma.

Our thought experiment with replacing Lisp and the extension libraries gives us
a new perspective on the oft-heard charge that Emacs is bloated because its extension
library is so large. Perhaps this is as unfair as charging that /bin/sh is bloated because
the collection of all shellscripts on a system is large. Emacs could be considered a
virtual machine or framework around a collection of small, sharp tools (the modes)
that happen to be written in Lisp.

On this view, the main difference between the shell and Emacs is that Unix dis-
tributors don’t ship all the world’s shellscripts along with the shell. Objecting to Emacs
because having a general-purpose language in it feels like bloat is approximately as
silly as refusing to use shellscripts because shell has conditionals and for loops. Just
as one doesn’t have to learn shell to use shellscripts, one doesn’t have to learn Lisp
to use Emacs. If Emacs has a design problem, it’s not so much the Lisp interpreter
(the framework part) as the fact that the mode library is an untidy heap of historical
accretions—but that’s a source of complexity users can ignore, because they won’t
be affected by what they don’t use.

This mode of argument is very comforting. It can be applied to other tool-
integration frameworks, such as the (uncomfortably large) GNOME and KDE desktop
projects. There is some force to it. And yet, we should be suspicious of any ‘perspec-
tive’ that offers to resolve all our doubts so neatly; it might be a rationalization, not
a rationale.

Therefore, let’s avoid the possibility of falling into denial and accept that Emacs
is both useful and large—that it is an argument against Unix minimalism. What does
our analysis of the kinds of complexity in it, and the motives for it, suggest beyond
that? And is there reason to believe that those lessons generalize?

31713.3 The Right Size for an Editor

The Right Size of Software13.4

There is a hidden dual of the Unix gospel of small, sharp tools; a background so im-
plicit that many Unix practitioners do not notice it, any more than fish notice the water
they swim in. It is the presence of frameworks.

Small, sharp tools in the Unix style have trouble sharing data, unless they live inside
a framework that makes communication among them easy. Emacs is such a framework,
and unified management of shared context is what the optional complexity of Emacs
is buying. The practical impact of unified management of shared context is that the
user is not burdened with low-level naming and resource-management issues.

In old-school Unix, the only framework was pipelines, redirection, and the shell;
the integration was done with scripts, and the shared context was (essentially) the file
system itself. But that was not the end of evolution.

Emacs unifies the file system with a world of text buffers and helper processes,
largely leaving the shell framework behind. Wily is also about buffers and helpers,
but incorporates the shell framework into itself. Modern desktop environments provide
a communication framework for GUIs, also leaving the shell framework behind. Each
framework has strengths and weaknesses of its own. Frameworks become homes to
ecologies of tools—the shell to shellscripts, Emacs to Lisp modes, and desktop envi-
ronments to flocks of GUIs communicating both via drag and drop and by more eso-
teric means such as object brokers.

This suggests a Rule of Minimality: Choose the shared context you want to manage,
and build your programs as small as those boundaries will allow. This is “as simple
as possible, but no simpler”, but it focuses attention on the choice of shared context.
It applies not just to frameworks, but to applications and program systems.

It is, however, all too easy to get sloppy about how large your shared context needs
to be. The pressure behind Zawinski’s Law is the tendency of applications to want to
share context for convenience. It’s easy to end up carrying around too much weight,
too many assumptions, and to write programs that are over-complex, bloated, and
huge. The paradigmatic example in the 1990s was the way that the mailto: URL
induced the growth of huge mail clients embedded in Web browsers.

The corrective to this tendency comes straight from the old-school Unix hymnbook.
It is the Rule of Parsimony: Write a big program only when it is clear by demonstration
that nothing else will do—that is, when attempts to partition the problem have been
made and failed. This maxim implies an astringent skepticism about large programs,
and a strategy for avoiding them: look for the small-program solution first. If a single
small program won’t do the job, try building a toolkit of cooperating small programs
within an existing framework to attack it. Only if both approaches fail are you free
(in the Unix tradition) to build a large program (or a new framework) without feeling
you have failed the design challenge.

Chapter 13 Complexity318

When you do write a framework, remember the Rule of Separation. Frameworks
should be mechanism, and have as little policy as possible. In most cases, that is no
policy at all. Factor as much behavior as possible into modules that use the framework.
One of the benefits of writing or re-using a framework is that it can help you separate
what would otherwise be big lumps of policy into separate modules, modes, or
tools—pieces that can be usefully recombined with others.

These rules are valuable heuristics, but the tension at the heart of the Unix tradition
does not resolve neatly into a set of a-priori prescriptions for optimal size of any
given project. Circumstances alter cases, and exercising good judgment and good
taste is what software designers are for. As in Soto Zen, the journey is the destination;
enlightenment has to be re-discovered in every day of practice.

31913.4 The Right Size of Software

